Max Horn Sat and Directed Hypergraphs: Algorithmic Enhancements and Easy Cases

نویسندگان

  • G. Gallo
  • C. Gentile
  • D. Pretolani
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horn renamability and hypergraphs

The satisfiability problem, SAT, consisting of testing the satisfiability of a propositional formula, is known to be NP-complete. On the other hand, several subclasses of propositional formulae are known, so that the restriction of SAT to such a subclass is solvable in polynomial time [7, 2] — among them Horn formulae [5] and formulae that are reducible toHorn, such as Horn-renamable formulae [...

متن کامل

Combinatorial Results on Directed Hypergraphs for the SAT Problem

Directed hypergraphs have already been shown to unveil several combinatorial inspired results for the SAT problem. In this paper we approach the SAT problem by searching a transversal of the directed hypergraphs associated to its instance. We introduce some particular clause orderings and study their influence on the backtrack process, exhibiting a new subclass of CNF for which SAT is polynomia...

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

Backdoor Treewidth for SAT

A strong backdoor in a CNF formula is a set of variables such that each possible instantiation of these variables moves the formula into a tractable class. The algorithmic problem of finding a strong backdoor has been the subject of intensive study, mostly within the parameterized complexity framework. Results to date focused primarily on backdoors of small size. In this paper we propose a new ...

متن کامل

Hard problems in max-algebra, control theory, hypergraphs and other areas

We introduce the max-atom problem (MAP): solving (in Z) systems of inequations of the form max(x, y)+k z, where x, y, z are variables and k ∈ Z. Our initial motivation for MAP was reasoning on delays in circuits using SAT Modulo Theories [10], viewing MAP as a natural extension of Difference Logic, i.e., inequations of the form x+ k y. Here we show that MAP is PTIME-equivalent to several rather...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996